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Abstract 29 

Sudden wind direction and speed shifts from outflow boundaries (OFBs) associated with deep 30 

convection significantly affect weather in the lower troposphere.  Specific OFB impacts include 31 

rapid variation in wildfire spread rate and direction, the formation of convection, aviation hazards, 32 

and degradation of visibility and air quality due to mineral dust aerosol lofting. Despite their 33 

recognized importance to operational weather forecasters, OFB characterization (location, timing, 34 

intensity, etc.) in numerical models remains challenging.  Thus, there remains a need for objective 35 

OFB identification algorithms to assist decision support services.  With two operational next-36 

generation geostationary satellites now providing coverage over North America, high-temporal 37 

and spatial resolution satellite imagery provides a unique resource for OFB identification.  A 38 

system is conceptualized here designed around the new capabilities to objectively derive dense 39 

mesoscale motion flow fields in the Geostationary Operational Environmental Satellite (GOES)-40 

16 imagery via optical flow.  OFBs are identified here by isolating linear features in satellite 41 

imagery, and back-tracking them using optical flow to determine if they originated from a deep 42 

convection source.  This “objective OFB identification” is tested with a case study of an OFB 43 

triggered dust storm over southern Arizona.  Results highlight the importance of motion 44 

discontinuity preservation, revealing that standard optical flow algorithms used with previous 45 

studies underestimate wind speeds when background pixels are included in the computation with 46 

cloud targets.  The primary source of false alarms is incorrect identification of line-like features in 47 

the initial satellite imagery.  Future improvements to this process are described to ultimately 48 

provide a fully automated OFB identification algorithm.  49 
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1. Introduction 50 

Downburst outflows from associated deep convection (Byers and Braham Jr., 1949; Mitchell 51 

and Hovermale, 1977) play a significant, dynamic role in modulation of the lower troposphere.  52 

Their direct impacts to society are readily apparent—capsizing boats on lakes and rivers with 53 

winds that seem to “come out of nowhere” (e.g. The Branson, MO duck boat accident; Associated 54 

Press 2018), causing shifts in wildfire motion and fire intensity that put firefighters in harm’s way 55 

(e.g. the Waldo Canyon and Yarnell Hill Fires; Hardy and Comfort, 2015; Johnson et al., 2014), 56 

and threatening aviation safety at regional airports with sudden shifts from head to tail-winds and 57 

turbulent wakes (Klingle et al., 1987; Uyeda and Zrnić, 1986).  In the desert southwest, convective 58 

outflows can loft immense amounts of dust, significantly reducing surface visibility and air quality 59 

for those within the impacted area (e.g. Idso et al. 1972; Raman et al. 2014). These outflows are 60 

commonly associated with rapid temperature, pressure, and moisture changes at the surface 61 

(Mahoney III, 1988).  Furthermore, the collision of outflows from adjacent storms can serve as the 62 

focal point of incipient convection or the intensification of nascent storms (Rotunno et al., 1988; 63 

Mueller et al., 2003). 64 

Despite the understood importance of deep convection and convectively driven outflows, high 65 

resolution models struggle to characterize and identify them (e.g. Yin et al. 2005).   At present, 66 

outflow boundaries (OFBs) are instead most effectively monitored in real-time at operational 67 

centers around the world with surface, radar, and satellite data. Satellites often offer the only form 68 

of observation in remote locations. The most common method for detecting outflows via satellite 69 

data involves the identification of clouds formed by strong convergence at the OFB leading edge.  70 

When the lower troposphere is dry, OFBs may be demarcated by an airborne “dust front”, after 71 

passing over certain surfaces prone to deflation by frictional winds (Miller et al., 2008).  The task 72 
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of identifying OFBs can prove quite challenging and would benefit greatly from an objective 73 

means of feature identification and tracking for better decision support services. 74 

The Advanced Baseline Imager (ABI), an imaging radiometer carried on board the 75 

Geostationary Operational Environmental Satellite (GOES)-R era systems, offers a leap forward 76 

in capabilities for the real-time monitoring and characterization of OFBs. Its markedly improved 77 

spatial (0.5 vs. 1.0 km visible, 2 km vs. 4 km infrared), spectral (16 vs. 5 spectral bands), and 78 

temporal (5 min vs. 30 min continental U.S., and 15 min vs. 3 hr full disk) resolution provides new 79 

opportunities for passive sampling of the atmosphere over the previous generation (Schmit et al., 80 

2016).  The vast improvement of temporal resolution alone (which includes mesoscale sectors that 81 

refresh as high as 30 s) allows for dramatically improved tracking of convection (Cintineo et al., 82 

2014; Mecikalski et al., 2016; Sieglaff et al., 2013), fires and pyroconvection (Peterson et al., 2015, 83 

2017, 2018), ice flows, and synoptic scale patterns (Line et al., 2016).  This higher temporal 84 

resolution makes identification of features like OFBs easier as well because of greater frame-to-85 

frame consistency.   86 

The goal of this work is to use ABI information towards objective identification of OFBs. One 87 

of the notable challenges in satellite identification of OFBs over radar or models is the lack of 88 

auxiliary information.  When working with a radar or a numerical model framework, for example, 89 

additional information is available on the flow, temperature, and pressure tendency of the 90 

boundary.  Without that information, however, forecasters must rely on their knowledge of gust 91 

front dynamics to identify OFBs in satellite imagery.  Here, we introduce the concept of objectively 92 

derived motion using GOES-16 ABI imagery for feature identification via an advanced optical 93 

flow method, customized to the problem at hand.  A case study of a convectively triggered OFB 94 

and accompanying haboob dust front is presented in 5-min GOES-16 contiguous United States 95 
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(CONUS) sector information, as a way of evaluating and illustrating the potential of the 96 

framework. 97 

This paper is outlined as follows.  The background for objective motion extraction and OFB 98 

identification is presented in Section 2.  The optical flow methods developed for this purpose are 99 

discussed in Section 3.  Section 4 presents the case study test of the current algorithm, and Section 100 

5 concludes the paper with a discussion on plans for future work in objective feature identification 101 

from next-generation geostationary imagers of similar fidelity to the GOES-R ABI, which are 102 

presently coming online around the globe.   103 

 104 

2. Background 105 

2.1 Previous Work in OFB Detection 106 

Objective identification of OFBs in meteorological data has been a topic of scientific inquiry 107 

for more than 30 years.  Uyeda and Zrnić (1986) and Hermes et al. (1993) use detections of wind 108 

shifts in terminal Doppler radar velocity measurements to isolate regions of strong radial shear 109 

associated with OFBs. Smalley et al. (2007) include the “fine line” reflectivity structure of 110 

biological- and precipitation-sized particles to identify OFBs via image template matching.  111 

Chipilski et al. (2018) considered the OFB objective identification in numerical models using 112 

similar image processing techniques, but with additional dynamical constraints on vertical velocity 113 

magnitudes and mean-sea level pressure tendency. Objective OFB identification has not been 114 

demonstrated to date with the new ABI observations of the GOES-R satellite series.  Identification 115 

via satellite imagery would be valuable for local deep convection nowcasting algorithms which 116 

use boundary presence as a predictor field (Mueller et al., 2003; Roberts et al., 2012), and for 117 
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operational centers around the world which may not have access to ground-based Doppler radar 118 

data. 119 

Traditionally, forecasters have identified OFBs in satellite imagery by visually identifying 120 

quasi-linear low-level cloud features and back-tracking them to an associated deep convection 121 

source.  Previous objective motion derivation algorithms are not designed to yield the dense wind 122 

fields necessary for identifying and tracking features such as OFBs (Bedka et al., 2009; Velden et 123 

al., 2005).  In fact, the original image window-matching atmospheric motion vector (AMV) 124 

algorithms produce winds only over targets deemed acceptable for tracking by pre-processing 125 

checks on the number of cloud layers in a scene, brightness gradient strength, and patch coherency.  126 

The targets are further filtered with post-processing checks on acceleration and curvature through 127 

three-frame motion and deviation from numerical model flow (Bresky et al., 2012; Nieman et al., 128 

1997; Velden et al., 1997). These practices were followed for a very practical reason—AMV 129 

algorithms were tailored for model data assimilation. In the formation of the model analysis, 130 

observational data must be heavily quality-controlled with outliers removed, to minimize data 131 

rejection. Here, information such as OFBs would be rejected due to the detailed space/time 132 

structure of actual convection which is typically poorly represented by the numerical model. 133 

Deriving two-dimensional flow information at every point in the imagery would require either 134 

modification of previous AMV schemes or post-processing of the AMV data via objective analysis 135 

(e.g. Apke et al. 2018).  The latter typically will not capture motion field discontinuities, resulting 136 

in incorrect flows near feature edges (Apke et al., 2016).  To capture such discontinuities in a dense 137 

flow algorithm, new computer vision techniques, such as the gradient-based methods of optical 138 

flow, must be adopted. 139 
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2.2 Optical Flow Techniques 140 

Optical flow gradient-based techniques derive motion within fixed windows, thus eliminating 141 

the reliance on models for defining a search region. A core assumption of many optical flow 142 

techniques is brightness constancy (Horn and Schunck, 1981).  Considering two image frames, 143 

brightness constancy states that the image intensity 𝐼 at some point 𝒙 = [𝑥, 𝑦]𝑇 is equal to the 144 

image intensity in the subsequent frame at a new point, 𝒙 + 𝑼, where 𝑼 = [𝑢, 𝑣]𝑇 represents the 145 

flow components of the image over the time interval (∆𝑡) between the two images:  146 

 𝐼(𝒙, 𝑡) = 𝐼(𝒙 + 𝑼, 𝑡 + ∆𝑡) (1) 

Eq. (1) can be linearized to solve for the individual flow components, 𝑢 and 𝑣: 147 

 ∇𝐼 ⋅ 𝑼 + 𝐼𝑡 = 0 (2) 

Where ∇𝐼 = [𝐼𝑥, 𝐼𝑦] represents the intensity gradients in the x and y direction, and 𝐼𝑡 represents 148 

the temporal gradient of intensity.  For one image pixel, Eq. (2) contains two unknowns with a 149 

simple translation model for 𝑼; therefore, it cannot be solved point-wise.  One well-known 150 

approach to solving this so-called “aperture problem” is the Lucas-Kanade, hereafter LK method, 151 

which considers a measurement neighborhood of the intensity space and time gradients (e.g., 152 

Baker and Matthews, 2004; Bresky and Daniels, 2006).  Use of neighborhoods, or image windows, 153 

to derive optical flow are called local approaches.  Another seminal approach was introduced by 154 

Horn and Schunck (1981; HS Method) which solves the aperture problem by adding an additional 155 

smoothness constraint to the brightness constancy assumption, and minimizing an energy 156 

magnitude between two images: 157 

 
𝐸(𝑢, 𝑣) = ∬(∇𝐼 ⋅ 𝑼 + 𝐼𝑡)2 + 𝛼(|∇2𝑢|2 + |∇2𝑣|2)

Ω

 𝑑𝐱 (3) 
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Where 𝐸(𝑢, 𝑣) represents an energy functional to be minimized over all image pixels Ω, 𝛼 is a 158 

constant weight used to control the smoothness of the flow components 𝑢(𝐱) and 𝑣(𝐱), and ∇2=159 

[∂/ ∂x , ∂/ ∂y]𝑇 . This optical flow derivation is called a global approach.  Eq. (3) is minimized in 160 

Horn and Schunck (1981) by deriving the Euler-Lagrange equations, and numerically solving with 161 

Gauss-Seidel iterations. 162 

Linearizing the brightness constancy equation into Eq. (2) means that large and non-linear 163 

displacements (typically > 1 pixel between images) will not be captured (Brox et al., 2004).  Thus, 164 

most optical flow computations initially spatially subsample images to where all displacements 165 

are initially less than 1-pixel (Anandan, 1989; discussed more in Section 3.1), which can cause 166 

fast moving small features to be lost.  Note that reducing the temporal resolution of GOES imagery 167 

(e.g. 10-min vs. 5-min scans) increases the displacement of typical meteorological features 168 

between frames.  Furthermore, constancy assumptions are more likely violated with reduced 169 

temporal resolution since image intensity changes more through evaporation and condensation of 170 

cloud matter over time.  Thus, for the spatial resolution of ABI, it is impractical to consider optical 171 

flow gradient-based methods at temporal resolutions coarser than 5-min for several mesoscale 172 

meteorological phenomena, including OFBs.  Very spatially coarse images do not need to be 173 

initially used with faster scanning rates, such as super rapid scan 1-min information (Schmit et al., 174 

2013), or the 30-s temporal resolution mesoscale mode of ABI (Schmit et al., 2016).   175 

While both the LK and HS methods are designed for deriving dense flow in satellite imagery, 176 

neither account for motion discontinuities in fields. Hence, both suffer from incorrect flow 177 

derivations near cloud edges, and would perform poorly for OFB detection and tracking.  Black 178 

and Anandan (1996) offer an intuitive solution to this problem, whereby the energy functional is 179 

designed to minimize robust functions that are not sensitive to outliers: 180 
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𝐸(𝑢, 𝑣) = ∬ 𝜌𝑑(∇𝐼 ⋅ 𝑼 + 𝐼𝑡) + 𝜌𝑠(|∇2𝑢|2 + |∇2𝑣|2)𝑑𝐱

Ω

 (4) 

The robust function data term for the standard HS approach is simply 𝜌𝑑(𝑟) = 𝑟2, and smoothness 181 

𝜌𝑠(𝑟) = 𝑟 which implies that energy functionals increase quadratically for 𝑟 outliers.  Other robust 182 

functions can also be minimized with similar gradient descent algorithms to Gauss-Seidel 183 

iterations, while being less sensitive to outliers (Press et al., 1992; Black and Anandan, 1996).  184 

Robust functions are popular in recent optical flow work (Brox et al., 2004; Sun et al., 2010), and 185 

a similar approach was adopted here and is discussed further in the methodology section.  The 186 

reader is referred to works by Barron et al. (1994), Fleet and Weiss (2005), and Sun et al. (2010) 187 

for a more comprehensive review on optical flow techniques. 188 

The relevance of optical flow in satellite meteorological research continues to increase now 189 

that scanning rates of sensors such as the ABI are routinely at sub 5-min time scales, making 190 

motion easier to derive objectively (Bresky and Daniels, 2006; Héas et al., 2007; Wu et al., 2016).  191 

The dense motion estimation within fine-temporal resolution data has yet to be used for feature 192 

identification. Optimizing optical flow for this purpose, and its specific application to OFBs, is the 193 

aim of this study.  The next section outlines our approach to this end. 194 

 195 

3. Methodology 196 

3.1 Optical Flow Approach 197 

A recent approach to handle piecewise and non-linear image changes in flow is introduced by 198 

Brox et al. (2004) (Hereafter B04), where the brightness constancy assumption is no longer 199 

linearized, i.e. 200 
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𝐸(𝑢, 𝑣) = ∬ 𝜌𝑑(|𝐼(𝒙 + 𝑼, 𝑡 + ∆𝑡) − 𝐼(𝒙, 𝑡)|2

Ω

+ 𝛾|∇2𝐼(𝒙 + 𝑼, 𝑡 + ∆𝑡) − ∇2𝐼(𝒙, 𝑡)|2)

+ 𝛼 𝜌𝑠(|∇2𝑢|2 + |∇2𝑣|2)𝑑𝒙 

(5) 

Following B04, within the data robust function, we now have also included a gradient constancy 201 

assumption, which is weighted by a constant 𝛾 to make the derived flow more resilient to changes 202 

in illumination.  Avoiding linearization of constancy assumptions improves the identification of 203 

large displacements between images.  The Charbonnier penalty is used for the data and smoothness 204 

robust functions following Sun et al. (2010), 205 

 𝜌𝑑(𝑟2) = 𝜌𝑠(𝑟2) = √𝑟2 + 𝜖2 (6) 

with 𝜖 representing a small constant present to prevent division by zero in minimization, set to 206 

0.001.  The values for 𝑼 are found by solving the Euler-Lagrange equations of Eq. (5) with 207 

numerical methods 208 

 
𝐸𝑢 −

𝑑𝐸𝑢𝑥

𝑑𝑥
−

𝑑𝐸𝑢𝑦

𝑑𝑦
= 0 (7) 

 
𝐸𝑣 −

𝑑𝐸𝑣𝑥

𝑑𝑥
−

𝑑𝐸𝑣𝑦

𝑑𝑦
= 0 (8) 

with reflecting boundary conditions and subscripts that imply the derivatives.  Eqs. (7) and (8) are 209 

solved with a nested-fixed point successive over-relaxation iteration scheme described in B04 and 210 

summarized in Fig. 1.  The reader is referred to Chapter 4 of Brox (2005) for details on the full 211 

discretization of the derivatives in the successive over-relaxation scheme.  Here, only the spatial 212 

dimensions are used for the smoothing term, though it is possible to include the time dimension 213 

with this system as well.   214 

https://doi.org/10.5194/amt-2019-131
Preprint. Discussion started: 1 July 2019
c© Author(s) 2019. CC BY 4.0 License.



11 
 

A difficulty in solving Eqs. (7) and (8) is that the successive over-relaxation scheme may 215 

converge on a local minimum of 𝐸(𝑢, 𝑣), rather than finding the global minimum.  The typical 216 

approach to find the global minimum is to compute optical flow with coarse- to fine-scale warping 217 

iterations (e.g. Anandan, 1989).  Coarse-to fine-scale warping iterations work by subsampling the 218 

initial image at native resolution to a coarser spatial resolution and computing the flow initially at 219 

the coarsest resolution in the image pyramid.  The 𝑼 results from the coarse image flow are then 220 

used as the first guess field to for the next finest scale on the image pyramid (Fig. 2), and the 221 

second image is warped accordingly.  The warping step ensures that estimated displacements at 222 

every step in the image pyramid remain small. 223 

The B04 scheme includes coarse-to fine-scale warping iterations at every outer iteration 𝑘.  224 

This means that the first iteration is run on a subsampled image, and the subsampling is reduced 225 

by a scale factor at every 𝑘 until the image reaches native resolution at the final 𝑘 = 𝑛𝐾.  Images 226 

at every 𝑘 in this subsampling are found using a gaussian image pyramid technique with bicubic 227 

interpolation.  The flow values of the image at 𝑘 − 1 are upscaled accordingly at 𝑘 also with 228 

bicubic interpolation (the initial flow guess is 𝑢 = 𝑣 = 0 at 𝑘 = 0).  For improved computation of 229 

spatial derivatives, the initial image is also smoothed with a 9x9 pixel kernel gaussian filter with a 230 

standard deviation set to 1.5 pixels.  The specific settings used for the coarse- to fine- warped flow 231 

scheme here are shown in Table 1.   232 

3.2 Objective OFB identification 233 

There are two steps to the objective OFB identification process.  First, a linear feature or sharp 234 

boundary is identified in visible or infrared imagery.  In some cases, the first step alone is enough 235 

to identify OFBs subjectively.  The second step is tracking that feature back in time to see where 236 

it originated from (typically, near an area with deep convection).  In the case of near stationary 237 
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convection and low-level flow, a forecaster might also use radial like propagation in this decision-238 

making process, however, since convection geometry and low-level flow varies from storm to 239 

storm, only the first two steps are considered here.  This approach aims to mirror the subjective 240 

process, leveraging the information content of optical flow to do so. 241 

 To handle the first step of line feature identification, a simple image line detection scheme was 242 

performed using the sum of a set of two-dimensional convolution kernels: 243 

𝑎1 = [
−1 −1 −1
2 2 2

−1 −1 −1
] 𝑎2 = [

−1 2 −1
−1 2 −1
−1 2 −1

] 𝑎3 = [
2 −1 −1

−1 2 −1
−1 −1 2

] 𝑎4 = [
−1 −1 2
−1 2 −1
2 −1 −1

] 244 

 245 

Applying these kernels to the gaussian smoothed ABI visible imagery (using a 21x21 kernel and 246 

standard deviation of 5 pixels) results in high intensity values where line structures exist.  A two-247 

dimensional convolution threshold of 0.02 was used with the visible imagery calibrated to 248 

reflectance factor to isolate line features.  This method was compared to a subjective interpretation 249 

of boundary location for validation.   250 

To address the second step of the process, the constrained optical flow approach described in 251 

Section 3.1 was used to track the boundary pixels (both objectively and subjectively identified) 252 

back in time for three hours.  The values of motion at each step in the backwards trajectory were 253 

determined with bilinear interpolation of the optical flow derived dense vector grid.  If a back-254 

traced pixel of the linear feature arrived within 50 km of a convective area with a 10.35 μm 255 

brightness temperature (BT10.35) lower than 223 K (-50 °C; using previous satellite imagery 256 

matched to the back-trajectory time), the original point was considered an OFB.  While this 257 

brightness temperature threshold is subjective and can vary from case to case, it was found to 258 

produce a reasonable approximation of deep convection areas when compared to ground-based 259 

radar information for the case study described in the subsequent sections. 260 
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3.3 Data 261 

The objective OFB identification methodology is tested using a case study from 5 July 2018 262 

over the southwestern United States.  This event featured a distinct OFB and associated dust storm 263 

that was well-sampled by various ground- and space- based sensors.  GOES-16 was in Mode-3, 264 

generating one image over the study area every 5-min (continental U.S., or CONUS, ABI scan 265 

domain).  Optical flow computations employ the GOES-16 (GOES-East) ABI red band (0.64 m; 266 

ABI channel 2), provided at a nominal sub-satellite spatial resolution of 500 m, but closer to 1 km 267 

at the case study location.  This channel is used at native resolution, though it can be subsampled 268 

with a low-pass filter such that future versions can implement color information from the blue and 269 

near-infrared bands (e.g. Miller et al. 2012).  This means that the optical flow approach here is 270 

daytime only.  A similar B04 approach can be used on infrared data as well for day/night 271 

independent information, though for detecting OFBs in the low levels, proxy visible products 272 

would perform best.  As described above, the clean longwave infrared band (10.35 m; ABI 273 

channel 13) is used as first-order information on optically thick cloud-top heights and to assess the 274 

convective nature of the observed scene (BT10.35 < 223 K). 275 

 High frequency Automated Surface Observing Stations (ASOS; NOAA 1998), recording 276 

temperature, pressure, wind speed and direction once every minute, complement the satellite 277 

imagery.  The Weather Surveillance Radar-1988 Doppler (Crum and Alberty, 1993) dual-278 

polarimetric data also sampled the OFB event from the KIWA radar near Phoenix, AZ.  To 279 

highlight the OFBs and the presence of dust, horizontal reflectivity and correlation coefficient are 280 

used (Van Den Broeke and Alsarraf, 2016).  Finally, for information on the full 3D dynamics of 281 

the case study, a numerical model representation of the environment was collected from the High 282 

Resolution Rapid Refresh system (HRRR, Benjamin et al. 2016).  The combination of these model 283 
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and observation datasets is employed to confirm the presence of a distinct convective OFB, rather 284 

than some other quasi-linear feature, such as a bore or elevated cloud layer, etc. 285 

 286 

4. Case Study Description 287 

Convection was observed in south central Arizona on 5 July 2018 after 1800 UTC.  A large 288 

and well-defined linear structure emerged from below the convective cloud cover at 2200 UTC to 289 

6 July 2018 0100 UTC propagating westward in GOES-16 imagery (Fig. 3).  This linear structure, 290 

demarcated by roll (arcus) clouds on the northern side and lofted dust on the southern side, was 291 

apparent with strong visible reflectance contrast against the relatively dark surface and BT10.35 ~ 292 

10 K cooler than the underlying surface.  The dust lofted by this outflow produced low visibility 293 

and hazardous driving conditions near Phoenix, AZ.  Dust storm warnings were issued by the local 294 

National Weather Service (NWS) forecast office by 2300 UTC.  The structure’s observed radial 295 

propagation away from nearby deep convection and associated cloud and dust features lends to its 296 

interpretation as a convective OFB.   297 

The OFB was also captured in radar scans from KIWA at 2200 UTC (Fig. 4).  The coincidence 298 

of low correlation coefficient (< ~0.5) and moderate to high reflectivity (near 20 dBZ) imply that 299 

the OFB was associated with airborne coarse dust particles.  Surface observations taken at the 300 

ASOS station reveal temperatures exceeding 317 K (44 °C) ahead of the OFB, with calm winds 301 

(Fig. 5).  Temperatures dropped by 4 K, wind speeds changed direction and increased sharply, and 302 

dew points increased rapidly as the OFB crossed the station at ~2316 UTC.  The rapid change in 303 

low-level meteorology is consistent with convective OFBs sampled in previous studies (e.g. 304 

Mahoney III, 1988; Miller et al., 2008).   305 
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The HRRR model captured the broad characteristics of this event (Fig. 6), showing moderate 306 

low-level winds in excess of 10 m s-1 (Fig. 6a), cooler temperatures (Fig. 6b), and simulated 307 

cumulus clouds from forced ascent (Fig. 6c).  Model cross sections (Fig. 6d) indicated a moderate 308 

increase in vertical motion ahead of the numerically derived boundary, and a sharp decrease in 309 

virtual potential temperature behind the boundary.  The shape of the virtual potential temperature 310 

profile is consistent with other model observations of OFBs (e.g. Chipilski et al., 2018).  The 311 

observation and model data all show that the linear structure observed in Fig. 3 was modifying the 312 

dynamics of the surface in a manner consistent with OFBs, and not some other linear cloud feature 313 

type that is decoupled from the surface and may be misidentified by the satellite.  Since such low-314 

level linear features are often obscured by cloud layers at higher altitudes, this case study in some 315 

respects represents a best-case-scenario for evaluating optical flow capabilities towards identifying 316 

OFBs.   317 

 318 

5. Results 319 

The first step in OFB identification requires identification of a feature that appears linear in 320 

the imagery.  Compared to the subjective boundary identification (considered as truth here; Fig 7a, 321 

blue dots), the convolution method gives a reasonable approximation to where the OFB is located 322 

within the higher intensity points in the convolution (Fig. 7b).  Unfortunately, the simply-applied 323 

convolution is also sensitive to linear features associated with the deep convection itself (the blue 324 

shading in Fig. 7b).  Hence, false alarms appear east of the boundary.  These issues can be filtered 325 

out using either cloud-top height or brightness temperature thresholding from separate infrared 326 

channels.  Alternatively, the storm-relative motion (here > 15 m s-1) from optical flow was used 327 

here to filter the false alarms (the red shading in Fig. 7b). 328 

https://doi.org/10.5194/amt-2019-131
Preprint. Discussion started: 1 July 2019
c© Author(s) 2019. CC BY 4.0 License.



16 
 

The second step requires these linear fast-moving features to be traced backward to a deep 329 

convection source using the optical flow computation (Fig. 8).  To the west of the boundary, near 330 

stationary optical flow vectors highlight the background (or ground) pixels.  The boundary itself 331 

exhibits a westward movement near 15-20 m s-1 (~30-40 kts).  The feature also appears to bow 332 

outwards after faster motions are observed, near 33° N, -112° E during 2338-2358 UTC (Figs. 8b, 333 

c).  Similar westward motion is derived in the wake of the OFB, within the convective cold pool.  334 

This results from the presence of airborne dust particles, which facilitate the computation of optical 335 

flow vectors in this region.   336 

The backwards trajectories of the subjectively and objectively identified OFB pixels in Figs. 337 

7c and d (B04 method) show that many of the linear cloud features, particularly those associated 338 

with the central arcus cloud, indeed originated near deep convection.  However, when the 339 

backwards trajectories of the B04 method were compared to other optical flow methods, such as 340 

the approach by Wu et al. (2016), most were unsuccessful at obtaining coincidence between linear 341 

cloud features along the OFB and a deep convection source.  Wu et al. (2016) used an approach 342 

introduced to the community by Farnebäck (2001), which is a local window method for optical 343 

flow.   344 

Example points 1–7 examined within the subjectively identified OFB backward trajectories 345 

highlight an issue with local window approaches for this application (Fig. 9).  The B04 approach 346 

(Fig. 9, blue/yellow) produced motions that were relatively consistent with the true boundary 347 

motion.  Thus, many points that are lost in the local approaches are successfully backtracked to 348 

the initial deep convection (e.g.  points 3–5).  With the Wu et al. approach (Fig. 9, orange/red), 349 

OFB targets move slower than the actual boundary, and, over a three-hour tracking period, 350 

eventually become stuck within the stationary background pixels.  This tracking issue stems from 351 
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an assumption made in many local approaches that pixels within an image window all move in the 352 

same direction with the same speed.  When background pixels are included within an image 353 

window containing clouds or dust, the resulting optical flow speed would then be underestimated.  354 

The slow bias is observed in plots of optical flow speeds along the OFB (Fig. 10), where the Wu 355 

et al. approach was ~5-10 m s-1 slower than the B04 approach.  While not shown, we found similar 356 

backward trajectory issues using the LK approach.  Full loops of the optical flow in Fig. 8 and 357 

trajectories in Fig. 9 are included as supplementary material to this manuscript. 358 

For all approaches tested, however, methods struggled to backtrack the newly formed cumulus 359 

to the north and the dust front to the south.  With the cumulus to the north, the issues with each 360 

algorithm appear to result from rapid cumulus development between frames (e.g. points 1 and 2 in 361 

Figs. 9a, b).  Condensation like what is observed here is unfortunately not considered in the 362 

brightness constancy assumption.  Thus, condensing cloud features would only be tracked back to 363 

when they initially form (after Fig. 9b) without additional dynamic constraints to Eq. (5).  An 364 

example can be seen when points 1 and 2 become stuck in Fig. 9c.  This has important implications 365 

on limitations of backtracking OFB features to deep convection with optical flow from imagery.  366 

If no cloud or dust feature exists to visualize an OFB in satellite imagery, some of the feature 367 

propagation may be lost.   368 

The dust to the south appears in the satellite imagery as early as 2200 UTC, though it was quite 369 

transparent relative to the ground.  It is therefore possible the stationary background pixels may be 370 

dominant in the optical flow computation at points 6 and 7, resulting in slower wind speeds than 371 

the true OFB propagation.  Points 6 and 7 are also located near cumulus moving across the OFB 372 

motion to the south.  This dust front tracking could be improved using multispectral techniques 373 

designed to highlight dust features over ground pixels, or by using additional color spectrum 374 
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information to discourage flow smoothness in Eq. (5) across the dust front from the cumulus to 375 

the south (e.g. Sun et al., 2010).   376 

Many line-like targets east of the OFB in Fig. 7d also originated from the deep convection, 377 

which constitute false alarms.  These false alarms can be reduced by further improving the OFB 378 

targeting step in the objective process in future studies.  For this case study, it may have been 379 

possible to use convergence methods, analogous to radar-based objective OFB identification, to 380 

isolate the boundary.  However, convergence as derived from the optical flow information here 381 

would only work because of local, stationary background pixels ahead of the OFB.  This means 382 

that convergence would almost always be inferred from OFB motion when the background is 383 

involved.  This approach would also be sensitive to nearby cloud structures ahead of the OFB 384 

which would exhibit different (non-stationary) motion from the background.  It is for this reason 385 

that a backwards trajectory approach was elected instead of basing the detection on local horizontal 386 

convergence.  The optical flow approach used here does help highlight the OFB when storm 387 

motion alone was considered in addition to convolution, showing how additional tools can be used 388 

in synergy to arrive at a more comprehensive objective feature identification approach in future 389 

studies.   390 

 391 

6. Conclusions and Future Outlook 392 

A new method for the objective identification of outflow boundaries (OFBs) in GOES-16 393 

Advanced Baseline Imager (ABI) data was developed using optical flow motion derivation 394 

algorithms and demonstrated with provisional success on a dust storm case study.  An optical flow 395 

system constructed for this purpose shows promise in identifying and backtracking object events 396 

to their source over traditional flow derivation methods, which can potentially be used to isolate 397 
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convective OFB features.  To the best of the authors’ knowledge, this study represents a first 398 

attempt to objectively identify OFBs in geostationary satellite imagery. 399 

The primary conclusions of this study are that optical flow approaches are now a viable option 400 

to acquire meso-scale flows relevant to OFB tracking and detection in 5-min geostationary satellite 401 

imagery, though the successful backtracking of OFB features requires use of flow algorithms that 402 

can handle the presence of motion discontinuities and stationary background flow.  The optical 403 

flow algorithm tested in this study produced a dense motion field that was closer than other 404 

methods to the true OFB motion and provided valuable information towards full objective OFB 405 

identification in new products. 406 

While several OFB related image pixels were successfully identified, the algorithm here is 407 

relatively immature and remains fraught with false alarms where linear features are incorrectly 408 

identified, and where correct features were not successfully backtracked to deep convection.  The 409 

algorithm is still limited by the assumptions made within optical flow, which only account for 410 

changes in image brightness intensity resulting from pure feature advection.  Therefore, if no 411 

features (e.g. clouds) exist to highlight an OFB boundary within the imagery, the method proposed 412 

here would not function properly.  The method also struggles to resolve true OFB motions with 413 

transparent dust movement, where a textured background beneath the dust may dominate the 414 

motion estimate within a scene.  Also, while infrared brightness temperature was enough to 415 

identify deep convection in this case study, convection may be missed by brightness temperature 416 

imagery if it is obscured by a higher cloud layer, or if the minimum cloud-top brightness 417 

temperature exceeds an arbitrarily set threshold.   418 

Given these limitations, future studies will explore more advanced systems for linear structure 419 

identification to identify candidate features for tracking towards full objective OFB identification.  420 
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A machine learning system will be used to determine which linear characteristics of the image 421 

should be backtracked instead of using two-dimensional convolution.  Optical flow can be used to 422 

precondition training information for a machine learning approach, if motion or semi-Lagrangian 423 

fields are needed.  Furthermore, it will be prudent to use deep convection correspondence through 424 

optical flow backtracking as one of many fields in future products, such as radial propagation away 425 

from storms and near surface meteorological properties, to probabilistically decide if an image 426 

pixel is associated with an OFB.  To better identify deep convection areas, the GOES Lightning 427 

Mapper (GLM) can be used, which provides information on lightning location and energy at 8 km 428 

resolution with a 2 ms frame rate.   429 

Feature identification with optical flow is not restricted to OFBs alone.  For example, the 430 

above-anvil cirrus plume (Bedka et al., 2018) over deep convection has been identified as an 431 

important indicator of severe weather at the ground, yet no objective means of identification exists 432 

today. The properties from optical flow could be used as an additional source of information in 433 

such algorithm designs, allowing researchers to backtrack features to their apparent source (the 434 

overshooting top in the case of the above-anvil cirrus plume) and monitor cloud temperature and 435 

visible texture trends, or to simply use the dense motion itself to achieve better results.  This 436 

method will also be applicable to other cold pool outflow phenomena, such as bores, for which 437 

new algorithms could utilize numerical model or surface observations for further clarification of 438 

linear feature type.   439 

Motion discontinuity preserving optical flow will also benefit several current algorithms for 440 

monitoring deep convection in satellite imagery.  Objective deep convection cloud-top flow field 441 

algorithms  (Apke et al., 2016, 2018) will benefit particularly when sharp cloud-edges and ground 442 

pixels are present in an image scene.  Systems that use infrared cloud-top cooling or emissivity 443 

https://doi.org/10.5194/amt-2019-131
Preprint. Discussion started: 1 July 2019
c© Author(s) 2019. CC BY 4.0 License.



21 
 

differences for deep convection nowcasting will also improve with better estimates of pre-444 

convective cumulus motion (Cintineo et al., 2014; Mecikalski and Bedka, 2006).   445 

While the utility of a backwards trajectory approach was considered here, many other possible 446 

methods exist for exploiting the semi-Lagrangian properties of time-resolved observations in 447 

satellite imagery (e.g. Nisi et al., 2014).  Use of fine-temporal resolution information will improve 448 

optical flow estimates, and in turn the estimates of brightness temperature, reflectance, or cloud-449 

property changes in a moving frame of reference.  We will explore these and other refinements in 450 

ongoing and future work on this exciting frontier of next-generation ABI-enabled science. 451 
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12. List of Tables 638 

Table 1. Settings used in the Brox et al. (2004) successive over-relaxation scheme. 639 
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13. List of Figures 641 

Figure 1. Flow chart of the B04 optical flow approach used here.  Note that SF, nK, nL and nM 642 

are defined in Table 1. 643 

Figure 2. Schematic of coarse- to fine-scale warping optical flow in GOES-imagery.  The largest 644 

displacements are found in the initial coarse grid (yellow arrow at the top of the pyramid), which 645 

are used as initial displacements for the next levels (red and blue arrows).  The final 646 

displacement is the sum of each displacement estimate (white arrow).  In this schematic, an 647 

example scale factor of 0.5 was used over 3 pyramid levels, in this work, a scale factor of 0.95 648 

for 77 levels was used. 649 

Figure 3. The 6 July 2018 0023 UTC GOES-16 0.64-μm visible reflectance (top) and BT10.35 650 

(bottom) over south-central AZ, centered on an OFB of interest. 651 

Figure 4.  The KIWA Radar 2244 UTC 0.5° horizontal reflectivity (top) in dBZ and correlation 652 

coefficient (bottom).  Range rings in grey indicate every 30° azimuth and 50 km in range. 653 

Figure 5.  Surface High Frequency METAR observations of temperature (K; top left), dewpoint 654 

(K; top right), mean sea level pressure (middle left), wind direction (° from N; middle right), 655 

wind speed (m s-1; bottom left), and wind gusts (m s-1; bottom right).  The surface station was 656 

located at (32.95 °N -111.77 °E).  The red line indicates the approximate time of boundary 657 

passage over the station. 658 

Figure 6. Four panel of HRRR output of OFB event, including a) wind speed, b) temperature, c) 659 

simulated infrared brightness temperature, and d) a cross section along the black line in c with 660 

virtual potential temperature 𝜃𝑣 in black contours (K), omega in color shaded pixels, and regions 661 

of relative humidity > 90% highlighted with dark shading (bottom right). 662 

https://doi.org/10.5194/amt-2019-131
Preprint. Discussion started: 1 July 2019
c© Author(s) 2019. CC BY 4.0 License.



29 
 

Figure 7.  The 0023 UTC GOES-16 0.64-μm visible channel shown with a) subjectively 663 

identified OFB (blue dots) and b) objectively identified linear features (blue shading).  Also 664 

shown are linear features that contained fast storm-relative motion (red shading).  The results of 665 

backtracking the c) subjectively and d) objectively identified OFB features are also shown, 666 

where blue dots represent targets tracked back within 50 km of a deep convection event, and 667 

orange dots are targets that were not. 668 

Figure 8.  GOES-16 0.64-μm visible channel imagery on 5 July 2018 at a) 2258 UTC, b) 2338 669 

UTC, c) 2358 UTC, and d) 0023 UTC over central Arizona shown with every 20th optical flow 670 

vector in the x and y directions (subsampled for image clarity) illustrated with yellow wind barbs 671 

(knots).  Circles represent motion < 5 kts, which commonly occur over ground pixels. 672 

Figure 9.  The GOES-16 0.64-μm visible imagery shown with image targets backtracked from 673 

subjective identification in Fig. 7a at 0023 UTC 6 July 2018 using the B04 method (blue/yellow) 674 

and the Wu et al. (2016) approach (orange/red) at a) 0023 UTC, b) 2358 UTC, c) 2338 UTC and 675 

d) 2213 UTC.  Individual points are highlighted from each approach (yellow and red dots; see 676 

text). 677 

Figure 10.  Color shaded wind speed for 0023 UTC 6 July 2018 over central Arizona shown 678 

from a) the B04 optical flow method and b) the Wu et al. (2016) flow, shown with respective 679 

flow vectors and the subjective position of the front edge of the OFB (blue line). 680 

 681 
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14. Tables 683 

Table 1. Settings used in the Brox et al. (2004) successive over-relaxation scheme. 684 

Parameter Value 

Outer Iterations (Pyramid Levels, nK) 77 

Inner Iterations (nL) 10 

Successive Over-Relaxation Iterations (nM) 5 

Successive Over-Relaxation Parameter 1.99 

Pyramid Scale Factor (SF) 0.95 

𝛾 10 

𝛼 50 
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15. Figures 686 

 687 

Figure 1. Flow chart of the B04 optical flow approach used here.  Note that SF, nK, nL and nM 688 

are defined in Table 1. 689 
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 691 

Figure 2. Schematic of coarse- to fine-scale warping optical flow in GOES-imagery.  The largest 692 

displacements are found in the initial coarse grid (yellow arrow at the top of the pyramid), which 693 

are used as initial displacements for the next levels (red and blue arrows).  The final 694 

displacement is the sum of each displacement estimate (white arrow).  In this schematic, an 695 

example scale factor of 0.5 was used over 3 pyramid levels, in this work, a scale factor of 0.95 696 

for 77 levels was used. 697 
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 699 

Figure 3. The 6 July 2018 0023 UTC GOES-16 0.64-μm visible reflectance (top) and BT10.35 700 

(bottom) over south-central AZ, centered on an OFB of interest. 701 
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 703 

Figure 4.  The KIWA Radar 2244 UTC 0.5° horizontal reflectivity (top) in dBZ and correlation 704 

coefficient (bottom).  Range rings in grey indicate every 30° azimuth and 50 km in range. 705 
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 707 

Figure 5.  Surface High Frequency METAR observations of temperature (K; top left), dewpoint 708 

(K; top right), mean sea level pressure (middle left), wind direction (° from N; middle right), 709 

wind speed (m s-1; bottom left), and wind gusts (m s-1; bottom right).  The surface station was 710 

located at (32.95 °N -111.77 °E).  The red line indicates the approximate time of boundary 711 

passage over the station. 712 
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 714 

Figure 6. Four panel of HRRR output of OFB event, including a) wind speed, b) temperature, c) 715 

simulated infrared brightness temperature, and d) a cross section along the black line in c with 716 

virtual potential temperature 𝜃𝑣 in black contours (K), omega in color shaded pixels, and regions 717 

of relative humidity > 90% highlighted with dark shading (bottom right). 718 
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 720 

Figure 7.  The 0023 UTC GOES-16 0.64-μm visible channel shown with a) subjectively 721 

identified OFB (blue dots) and b) objectively identified linear features (blue shading).  Also 722 

shown are linear features that contained fast storm-relative motion (red shading).  The results of 723 

backtracking the c) subjectively and d) objectively identified OFB features are also shown, 724 

where blue dots represent targets tracked back within 50 km of a deep convection event, and 725 

orange dots are targets that were not. 726 
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 728 

Figure 8.  GOES-16 0.64-μm visible channel imagery on 5 July 2018 at a) 2258 UTC, b) 2338 729 

UTC, c) 2358 UTC, and d) 0023 UTC over central Arizona shown with every 20th optical flow 730 

vector in the x and y directions (subsampled for image clarity) illustrated with yellow wind barbs 731 

(knots).  Circles represent motion < 5 kts, which commonly occur over ground pixels. 732 

 733 
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 735 

Figure 9.  The GOES-16 0.64-μm visible imagery shown with image targets backtracked from 736 

subjective identification in Fig. 7a at 0023 UTC 6 July 2018 using the B04 method (blue/yellow) 737 

and the Wu et al. (2016) approach (orange/red) at a) 0023 UTC, b) 2358 UTC, c) 2338 UTC and 738 

d) 2213 UTC.  Individual points are highlighted from each approach (yellow and red dots; see 739 

text). 740 

  741 

https://doi.org/10.5194/amt-2019-131
Preprint. Discussion started: 1 July 2019
c© Author(s) 2019. CC BY 4.0 License.



40 
 

 742 

Figure 10.  Color shaded wind speed for 0023 UTC 6 July 2018 over central Arizona shown 743 

from a) the B04 optical flow method and b) the Wu et al. (2016) flow, shown with respective 744 

flow vectors and the subjective position of the front edge of the OFB (blue line). 745 
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